

PASSIVE COMPONENTS

Keys to Enabling Advanced Future System Designs

() <u><u></u></u> \Re

Ron Demcko ron.demcko@avx.com 919 271 0047 OUTLINE

Current State Where Are We At Today

How Did We Get Here Drivers

Examples Where Capacitors Enable Performance

Where Are We Going & What Does The Future Hold

ADVANCEMENT OF CAPACITOR TECHNOLOGY *Then vs Now*

State of the Art Technology Now

WHERE ARE CAPACITORS TODAY

(Modified from) Source: EPCI

2019 WHERE WE ARE TODAY

Just experienced shortages and market conditions unlike anything we have seen before

Source:

The Wall Street Journal

BUSINESS

Parts Shortages Crimp U.S. Factories

As suppliers struggle to meet demand, Caterpillar fights to fill orders and Oshkosh idles crane output

CYCLIC NATURE OF CAPACITOR SHORTAGES

SUPPLY SHORTAGE IMPACTS:

Design Engineers were driven to align usage with parts readily available – **compromises made**

Exploring Design Changes to Reduce Component Count

Increased Collaboration in New IC Types Causing Accelerated Innovation / Rate of Change

DRIVERS -

MASSIVE NEW MARKETS AND APPLICATION NEED

The next 10 years will be nothing like anything we have seem

Rapid Emergence Of Whole New Markets, Systems & Applications:

- Virtual Reality / Augmented Reality
- EVs
- Autonomous Vehicles
- 5G
- IoT Cloud

- Smartphones/ PDA
- Charging Wireless Low Power & Wired High Power
- Medical Electronics
- Advanced Robotics

MULTIPLE KEY GROWTH AREAS LETS DIVE INTO 2 'SECTORS'

EXAMPLE - WHERE CAPACITORS ENABLE PERFORMANCE: ADVANCED SEMICONDUCTORS

DIE SCALING HAS DROPPED IC SUPPLY VOLTAGE

- Capacitors job decoupling more critical
- Clock & data speeds making Di/Dt drawn larger

TYPICAL FPGA 6 OR MORE DIFFERENT VOLTAGES

0805 MLCC ESL ~ 600pH

0508 LGA ESL ~ 27pH

TYPICAL FPGA 6 OR MORE DIFFERENT VOLTAGES

Source:

Maxim

Table 1. Xilinx Virtex-7 Power-Supply Requirements

	Power Rail	Nominal Voltage (V)	Tolerance	Description
	VCCINT	1.0*	±3%*	Voltage supply for the internal core logic
	VCCAUX	1.8	±5%	Voltage supply for auxiliary logic
	Vcco	1.2 to 3.3	1.11V to 3.45V**	Voltage supply for I/O banks
	MGTAVCC	1.0	±3%	Voltage supply for GTX transceiver
	MGTAVTT	1.2	±30mV	Voltage supply for GTX transceiver termination circuits
*	The lowest-spee	d "-11 " version of the Virte	x_{-7} has a 0.9V core y	oltage with a +30m\/ tolerance

*The lowest-speed "-1L" version of the Virtex-7 has a 0.9V core voltage with a ±30mV tolerance. **The specification for 3.3V HR I/O banks is 3.45V (max). The specification for 1.8V HR I/O banks is 1.89V (max).

0805 MLCC ESL ~ 600pH

0508 MLCC ESL ~ 45pH

TODAYS SOLUTION

LOW INDUCTANCE MLCCS OR SMALL CASE MLCCS IN LOW INDUCTANCE CONFIGURATION

- 0402 Caps Inside 0.8 mm Pitch BGA
- 0201 Caps Placed 90° Rotated Allows For More Caps Underneath The BGA Area

EXAMPLE - WHERE CAPACITORS ENABLE PERFORMANCE: IoT]2

GROWTH OF THE IoT

Key:

Per Statista 37 billion 2019, 75 Billion 2025

Per Ericsson 18 billion 2019

The Number of Connected Devices will Exceed 75 Billion by 2025

Source: CISCO

IoT WILL DRIVE PASSIVE COMPONENT VOLUMES IoT WILL DRIVE ENERGY HARVESTING METHODS, CIRCUITS & MODULES

SIMPLIFIED IOT STAMP PROFILE

Sensor

COST PRESSURES WILL DRIVE INTEGRATION

WILL COST PRESSURES DRIVE INTEGRATION

Power Of the Future:

- Small, Light, Cheap
- High Performance
- High Life Cycles
- Reliable
- Billions Made

 What's Next?

APPLICATION #3 CAPACITORS ELECTRIC VEHICLES

- EV Capacitor content massive >10,000 capacitors
- Ranges from RF to Power Caps
- High Temp 150c/175c to decoupling & AC coupling on ADAS Drive – (critical for safety)
- Wireless charge circuitry

- Plug in charger & DC drive filtering
- DC Link Caps
- EMI Filter Caps
- Safety Caps

HEV/EV TRACTION CHAIN

EV POWER CAP OPTIONS & TRADE OFFS

Application Needs:

More Cap, Higher Voltages, Smaller & Lighter Packages That Work At Hotter Temperatures

PARAMETER	FILM CAPACITOR	ELECROLYTIC CAPACITOR	
Cost	High	Low	
Size	Potentially smaller	Mixed volumetric efficiency	
Surge Voltage Capability	2x rated voltage	1.2x rated voltage	
Revere Voltage Capable	Yes	No	
RMS Current	= 1 A rms/ uF</td <td><!--=0.025A rms/uF</td--></td>	=0.025A rms/uF</td	
MTBF	>/= 10 million hours	1 Million hours	
Life Time	> / = 100,000 hours	>/= 40,000 hours	
Storage	> 10 years	1 year	
Environmentally friendly	Yes	No	
End of life	Soft – failure loss of cap	Explosion Risk	

-Driving

Autonom

FUTURE TRENDS BY GROUP

Capacitance

(Modified from) Source: EPCI

WHERE ARE WE GOING & WHAT DOES THE FUTURE HOLD ?

	CAPACITOR TYPE					
PARAMETER	SMALL SIGNAL	RF	POWER	BULK GENERAL PURPOSE		
Cap Value	**	**		▲		
Rated Voltage	**			**		
Size	★ →	* →	*	*		
Temperature Stability	**		*	▲ →		
DC Bias Stability Need	•		*	•		
Temperature Range	▲ →	↓ →				
Frequency	•			▲ →		
Loss Characteristics	*	*	*	*		

AS ICs EVOLVE INTO SOCS & SIPS POWER QUALITY NEEDS INCREASE

ONE POSSIBLE EVOLUTION Novel Designs

Source: IBM NIST

WHAT IF THIS IS THE CAPACITOR ?

Summary:

THE FUTURE HAS UNIMAGINABLE UPSIDES

Shortages Drive Design Innovation

Need for efficient caps is growing

Capacitor evolution driven by:

- 1) IC Demands
- 2) New Applications

3) Emerging Active/Passive Packages

2000111110**0010101**

THANK YOU.

FOLLOW US: OFFICE

VISIT US AT WWW.AVX.COM