• Latest
  • Trending

Concepts and Measurements

binder Easy Locking Connector Receives POY Award in Medical Devices

binder Easy Locking Connector Receives POY Award in Medical Devices

4th PCNS Call for Abstracts Extended !

4th PCNS Call for Abstracts Extended !

PCNS Passive Components Symposium 11-14th September 2023
Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

<div>Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition</div>

Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

Pasternack Unveils 1.00 mm Passive Coaxial Components 

Pasternack Unveils 1.00 mm Passive Coaxial Components 

Designing with High Voltage Resistors: 10 Top Tips for Success

Designing with High Voltage Resistors: 10 Top Tips for Success

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

2022 Connector Market vs Semiconductor Sales

2022 Connector Market vs Semiconductor Sales

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

Optimization of 500W LLC Transformer – Case Study

Optimization of 500W LLC Transformer – Case Study

  • Home
  • ABC of CLR
    • All
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines

    RF Inductors and Filters

    Power transformers

    Telecom transformers

    LAN transformers

    Transformer Calculation and Applications

    Power Inductors 2 (cont.)

    Power inductors

    Current compensated chokes

    Coil with ferrite

    Trending Tags

      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines
    • e-Symposium
    • EPCI Membership
    • About
    No Result
    View All Result
    European Passive Components Institute
    • Home
    • ABC of CLR
      • All
      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines

      RF Inductors and Filters

      Power transformers

      Telecom transformers

      LAN transformers

      Transformer Calculation and Applications

      Power Inductors 2 (cont.)

      Power inductors

      Current compensated chokes

      Coil with ferrite

      Trending Tags

        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About
      No Result
      View All Result
      European Passive Components Institute
      No Result
      View All Result
      Home ABC of CLR ABC of Capacitors

      Concepts and Measurements

      January 21, 2022
      Reading Time: 5 mins read
      46 1
      A A

      C 3.2 CONCEPTS AND MEASUREMENTS

      C 3.2.1 The CV product

      The product CR x VR is called the CV product and is a measure of the charge quantity. CR is expressed in µF and VR in volt. The product has the quantity µAs or µC (microCoulomb).

      C 3.2.2 Leakage current / DC Leakage (DCL)

      The leakage current (DCL) in electrolytics increases linearly as DC voltage is first applied. But when the DC voltage exceeds the rated voltage of the part the DCL increases upwards exponentially and will at the forming voltage achieve very high values. Increases in temperature also force the DCL up (Figure C3-19).

      Figure C3-19. DCL versus voltage and temperature.

      DC leakage measurements are specified at rated voltage and at room ambient conditions, usually 20 or 25 °C.

      Figure C3-20. Charge circuit for a capacitor.

      If we charge a capacitor as shown in Figure C3-20 the current will follow the schematic curve in Figure C3-21.

      Figure C3-21. Inrush current upon charging of an electrolytic capacitor.

      In sections C3.2.1 and C3.2.2 we talked about dipoles and dielectric absorption. Inert dipoles need some time to align themselves in the electric field direction. As long as the alignment proceeds the capacitance increases and with that the need for further charge contributions, i.e. current. There are inert molecular complexes in the electrolyte, in the paper separator and in the dielectric oxide.

      Aluminum electrolytics have a dielectric absorption of about 8 %, tantalums approximately 8-10 %. This value of course influences the charge current in an electrolytic capacitor. Thus it will present the appearance shown in Figure C3-21. The time to achieve a pure leakage current amounts to days (at room ambient). Of course, it’s impossible to wait that long. Therefore, in common standards the measurement time is specified to be 5 minutes with rated voltage applied at room ambient (20 or 25 °C). Shorter times occur.

      Japanese manufacturers often specify 2 minutes. For production control shorter times are typically used with go/no go measuring equipment. Figure C3-22 shows typical comparison curves for DCL and its temperature dependence at a certain CV product for different types of tantalum electrolytics. Note that a typical DCL is approximately one order of magnitude smaller than the specified maximum value.

      Figure C3-22. DC Leakage versus time in tantalum electrolytics.

      Similarly the 5 minute values for Al electrolytics is at least one power smaller than the specified limit. Should one need to make use of the actual low DCL value one has to check with the manufacturer for the probability of greater deviations from the production mean value and also the margin between the 5 minute values and the final value (perhaps an order of magnitude).

      C 3.2.3 Losses

      With reference to Figure C3-10, the losses in wet Al electrolytics consist of contributions from electrolyte, dielectric and metallic tabs and foils:

      • Rs = losses in the dielectric (oxide layer) and in foils and tabs.

      • Re = resistance in electrolyte and separator foil.

      • ESR = Rs+Re.

      A contribution to Rs is the number and location of the connecting Al strips that are welded to the winding electrode foils. Figure C3-23 shows examples of optimum arrangements.

      Figure C3-23. Foil resistance examples versus location of the terminal ribbons.

      For all types of electrolytics the conductivity of the electrolyte plays a crucial part in the losses. Furthermore, this contribution increases with an increasing degree of etching. The deeper the pores, the larger the electrolytic resistance in series with the capacitance elements. All this together means that the dissipation factor of electrolytics will be high and increasing with decreasing temperatures. But the search for low ESRs, not the least for wet Al electrolytics designed for Switched Mode Power Supplies (SMPS), has brought forth new constructions and electrolytes with lower resistivity. ESR in wet Al electrolytics usually is measured at 120 (100) Hz and 100 kHz.

      C 3.2.4 Measurements / tests

      Under this heading we will briefly survey the most common measurement conditions and tests for different parameters.

      Capacitance and Dissipation factor

      Table C3-1. Differences between different standard limits are held within stated limits in the table.

      Leakage current / DCL

      Table C3-2. DC Leakage measurements. In certain cases a limiting resistor Rs is prescribed.

      Surge voltage tests

      Table C3-3. Common surge voltage tests.

      Reverse voltage tests

      Table C3-4. Common reverse voltage tests.


      ABC of CLR: Chapter C Capacitors

      Concepts and Measurements

      EPCI licenced content by:

      [1] EPCI European Passive Components Institute experts original articles
      [2] CLR Passive Components Handbook by P-O.Fagerholt*

      *used under EPCI copyright from CTI Corporation, USA

      Creative Commons License

      This page content is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

      see the previous page:

      Electrolytic Capacitors

      < Page 17 >

      see the next page:

      Wet Aluminum Capacitors

      Previous Post

      Electrolytic Capacitors

      Next Post

      Wet Aluminum Electrolytics

      Related Posts

      ABC of CLR

      RF Inductors and Filters

      851
      ABC of CLR

      Power transformers

      697
      ABC of CLR

      Telecom transformers

      542

      Categories

      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
        • ESA SPCD
        • PCNS
      • EPCI news
      • news collection

      Popular Posts

      • Transformer: Parasitic parameters and equivalent circuit

        1220 shares
        Share 488 Tweet 305
      • Transformer Calculation and Applications

        663 shares
        Share 265 Tweet 166
      • Simulation with LTspice

        447 shares
        Share 179 Tweet 112
      • Introduction to Ceramic Capacitors

        446 shares
        Share 178 Tweet 112
      • Insulation Resistance, DCL Leakage Current and Voltage Breakdown

        415 shares
        Share 166 Tweet 104

      EPCI Membership

      join passive components community

      © 2023 European Passive Components Institute

      No Result
      View All Result
      • Home
      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About

      Welcome Back!

      Login to your account below

      Forgotten Password?

      Retrieve your password

      Please enter your username or email address to reset your password.

      Log In
      This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.