• Latest
  • Trending

Other Inorganic Dielectrics

binder Easy Locking Connector Receives POY Award in Medical Devices

binder Easy Locking Connector Receives POY Award in Medical Devices

4th PCNS Call for Abstracts Extended !

4th PCNS Call for Abstracts Extended !

PCNS Passive Components Symposium 11-14th September 2023
Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

Vishay Increases Anti-Surge Thick Film 0805 Power Resistor Performance with 0.5 W Power Rating

<div>Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition</div>

Q&A Update on Aluminum Capacitor Technology with Industry Highest Energy Density >5J/cc Available for Acquisition

Pasternack Unveils 1.00 mm Passive Coaxial Components 

Pasternack Unveils 1.00 mm Passive Coaxial Components 

Designing with High Voltage Resistors: 10 Top Tips for Success

Designing with High Voltage Resistors: 10 Top Tips for Success

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

API Delevan Introduces 0402 and 0603 Small High Reliability Space SMD Inductors

2022 Connector Market vs Semiconductor Sales

2022 Connector Market vs Semiconductor Sales

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

KYOCERA AVX Antenna Simulation Models are now Available in Ansys Simulation Software

Optimization of 500W LLC Transformer – Case Study

Optimization of 500W LLC Transformer – Case Study

  • Home
  • ABC of CLR
    • All
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines

    RF Inductors and Filters

    Power transformers

    Telecom transformers

    LAN transformers

    Transformer Calculation and Applications

    Power Inductors 2 (cont.)

    Power inductors

    Current compensated chokes

    Coil with ferrite

    Trending Tags

      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines
    • e-Symposium
    • EPCI Membership
    • About
    No Result
    View All Result
    European Passive Components Institute
    • Home
    • ABC of CLR
      • All
      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines

      RF Inductors and Filters

      Power transformers

      Telecom transformers

      LAN transformers

      Transformer Calculation and Applications

      Power Inductors 2 (cont.)

      Power inductors

      Current compensated chokes

      Coil with ferrite

      Trending Tags

        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About
      No Result
      View All Result
      European Passive Components Institute
      No Result
      View All Result
      Home ABC of CLR ABC of Capacitors

      Other Inorganic Dielectrics

      January 21, 2022
      Reading Time: 8 mins read
      32 1
      A A

      C 2.12 OTHER INORGANIC DIELECTRICS

      C 2.12.1 Class 3 ceramics

      The headlined type of ceramic capacitor are also called barrier layer capacitor. It consists of sintered granules of titanium oxides with semiconductor properties. On the surface of every granule there is created a capacitive barrier layer zone. The sum of all small capacitance elements gives a high total capacitance. The dielectric constant will be correspondingly high – εr ≤ 100 000 – but the dielectric withstanding voltage (and rated voltage) as well as the IR will be low. The temperature dependence is very high and the stability poor.

      Thus Class 3 ceramics are of a very small importance in professional electronics. Hence we confine ourselves just with mentioning the occurrence.

      C 2.12.2 Glass capacitors

      The one in all respects most environmentally resistant capacitor we know is the glass capacitor. Except for common environments the capacitor also will stand high nuclear radiation doses and strong neutron radiation. It is specified in US MIL-C-11272 and –23269. The capacitance range is limited compare to other technologies to tenth of nanofarads. The capacitor is, just as the MLCC, manufactured in a stacked form. Both the dielectric and encapsulation consist of glass that constitutes a homogeneous and extremely resistive product in all environments.

      The electrodes most often consist of aluminum foils that are folded over the edges of the end surfaces and are welded to the connecting leads. A relatively thick dielectric – at least 50 µm – and a thick encapsulation makes together with the aluminum foils the capacitor bulky. On the other hand the Al foils permit high surge currents. The dielectric absorption of older production was stated to approximately 0.5%, while testing of recent manufacture accounts for 0.01 %. The most common failure usually is defective weld joints between Al foils and leads. High pulse currents then burn the weak joints thus causing an open-circuit. The failure rate in general increases with the proportions λ120° : λ25° ≈ 50 : 1.

      Summary of glass capacitors

      • very high stability, no corrosion or degradation, no microfractures, delaminations …
      • hermetically axial case practically immune to severe environmental effects such as shock, vibration, radiation resistance, moisture, salt spray, and solder heat.
      • zero aging rate, high Q factor, large RF Current Capability, no piezoelectric noise, low dielectric absorption, ±5ppm temperature coefficient retraceability, high breakdown voltage, zero voltage coefficient, up to -75°C – +200°C
      • pF to hundreds / th. pF, several hundreds V

      C 2.12.3 Mica capacitors

      Previously MICA capacitors have due to their stability and their good HF characteristics been dominating for filter purposes. Today there are plastic film capacitors that in many respects are more favorable. What still makes the mica capacitor interesting is its stability, the small tolerances and the temperature range (-55/+125 and up to 200°C). Mica is a mineral that for capacitor purposes is mined dominantly in India. Mica has a high voltage strength and low losses. The capacitors are manufactures in a stacked form, either with metal foil electrodes (stacked mica), or with electrodes consisting of a screen printed silver oxide paste that under reduction to silver is burnt to the mica surface, so called silvered mica.

      The stacked mica can, among other things, stand higher currents and are more used in power electronics. We only mention their occurrence and will not deal with the subject any further. The silvered mica capacitors that are most common normally can stand currents only in the mA range but there exist special designs for stronger currents. Silvered mica are also produced as chips. There are examples that show that the capability to stand power sometimes is better than that of ceramic Class 1 chips.

      A special variant of mica capacitors is the mica paper type. Small mica scales are treated approximately like paper pulp and is transferred to sheets and either wound with aluminum foils or stacked with electrodes. The result will be a kind of mica capacitor with relatively high losses (similar to polyester and paper) and in other respects equivalent to the conventional mica. Also this type belongs more to the power electronics and will not be treated further in this context. The connection to the silvered mica electrodes is made at the edge of the end surfaces by special foil sheets, usually silver.

      Suntan Sm Silver Mica Capacitors With High Reliability --ts23 ...
      Suntan Silver MICA Capacitor

      The silvered mica packet then is pressed together, the silver foil sheets are folded and soldered to the connecting leads whereupon the packet is supplied with fixing metal clamps. The stack is vacuum impregnated, usually with epoxy. Because the silver electrodes are extremely apt to migration in moisture the capacitor has to be encapsulated. Either it is molded in plastic or dipped in some kind of phenolic lacquer. The more layers the better vapor barrier. For professional applications there should be at least four layers of lacquer. The pressure clamps lead at temperature changes to traces of capacitance hysteresis. When we return to the starting temperature a certain ∆C appears that due to the TCE of the clamps cause an incomplete mechanical pressing together to the initial pressure.

      Measurement frequencies:

      • C ≤ 1000 pF Measurement frequency 1 MHz.
      • C > 1000 pF Measurement frequency 1 kHz.

      MICA capacitors summary

      • Mica minerals are very stable electrically, chemically and mechanically. Because of its specific crystalline structure binding, it has a typical layered structure. This makes it possible to manufacture thin sheets in the order of 0.025-0.125 mm
      • high thermal stability performance at temperatures of 175°C+
      • high power applications requiring low inductance at high frequencies, temperatures up to +200°C, and voltages up to 1,000Vdc.
      • axial leaded with voltage ratings up to 5KVdc, capacitance ratings as high as 3.0µF, and a temperature rating of +175°C.
      • hermetic metal or glass bead seal in radial and axial mounting options; the rated voltage range is 63Vdc – 250Vdc, and the operating temperature range -55°C – +200°C. These capacitors are designed for extreme temperature applications such as oil/gas exploration and high temperature engines.

      C 2.12.4. Air/Vacuum capacitors

      Comet PCT - CVSA-2300AC/15-ADB
      Comet Vacuum Variable Capacitors

      Very specific group of capacitors are air and vacuum capacitors. Relative permittivity dielectric constant is close to 1 as per its definition, thus capacitors are large in size. Nevertheless, its losses are low under high power load. These capacitors are used specifically for RF applications from VHF to microwave frequencies in power broadcasting as trimmer capacitors etc.

      Air/Vacuum capacitors summary

      • Air trimmer capacitors
      • Specifically for RF applications, VHF through microwave
      • High Q and temperature stability
      • Vacuum – high power RF – broadcasting, networks, tenth of kV, hundreds pF

      COMPARISON

      Table C2-14. GLASS / MICA

      C 2.13 COMPARISON DIAGRAMS, ELECTROSTATIC CAPACITORS

      Figure C2-105. Typical frequency ranges for different electrostatic capacitor types (solid tantalum inserted just for comparison)
      Figure C2-106. Approximate capacitance ranges for different types of electrostatic capacitors.

      featured image: High Temp Mica Capacitor; credit: Green Tech


      ABC of CLR: Chapter C Capacitors

      OTHER INORGANIC DIELECTRICS

      EPCI licenced content by:

      [1] EPCI European Passive Components Institute experts original articles
      [2] CLR Passive Components Handbook by P-O.Fagerholt*

      *used under EPCI copyright from CTI Corporation, USA

      Creative Commons License

      This page content is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

      see the previous page:

      Silicon and Silicon Wafer Based Integrated Capacitors

      < Page 15 >

      see the next page:

      Electrolytic Capacitors

      Previous Post

      Silicon and Silicon Substrate Based Integrated Capacitors

      Next Post

      Electrolytic Capacitors

      Related Posts

      ABC of CLR

      RF Inductors and Filters

      851
      ABC of CLR

      Power transformers

      697
      ABC of CLR

      Telecom transformers

      542

      Categories

      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
        • ESA SPCD
        • PCNS
      • EPCI news
      • news collection

      Popular Posts

      • Transformer: Parasitic parameters and equivalent circuit

        1220 shares
        Share 488 Tweet 305
      • Transformer Calculation and Applications

        663 shares
        Share 265 Tweet 166
      • Simulation with LTspice

        447 shares
        Share 179 Tweet 112
      • Introduction to Ceramic Capacitors

        446 shares
        Share 178 Tweet 112
      • Insulation Resistance, DCL Leakage Current and Voltage Breakdown

        415 shares
        Share 166 Tweet 104

      EPCI Membership

      join passive components community

      © 2023 European Passive Components Institute

      No Result
      View All Result
      • Home
      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About

      Welcome Back!

      Login to your account below

      Forgotten Password?

      Retrieve your password

      Please enter your username or email address to reset your password.

      Log In
      This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.