• Latest
  • Trending

KEMET Miniaturized EMI-Suppression and DC-Link Power Box Unique Designs for Harsh Environment in Energy, Industrial and Automotive Application

Würth Elektronik Launches New Line of Toggle Switches

Würth Elektronik Launches New Line of Toggle Switches

Microwave Multi Line Connectors Mounting and Handling Precautions

Microwave Multi Line Connectors Mounting and Handling Precautions

PCNS Passive Components Symposium 11-14th September 2023
Flex Suppressor Explained and its Applications

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Samtec New Interconnects Enhances Power and Signal Integrity

Samtec New Interconnects Enhances Power and Signal Integrity

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

PCB Via Design Selection; Plugging-Filling-Tenting

PCB Via Design Selection; Plugging-Filling-Tenting

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

Outlook of Passive Electronic Components Market for Oil and Gas Electronics in 2023

  • Home
  • ABC of CLR
    • All
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines

    RF Inductors and Filters

    Power transformers

    Telecom transformers

    LAN transformers

    Transformer Calculation and Applications

    Power Inductors 2 (cont.)

    Power inductors

    Current compensated chokes

    Coil with ferrite

    Trending Tags

      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines
    • e-Symposium
    • EPCI Membership
    • About
    No Result
    View All Result
    European Passive Components Institute
    • Home
    • ABC of CLR
      • All
      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines

      RF Inductors and Filters

      Power transformers

      Telecom transformers

      LAN transformers

      Transformer Calculation and Applications

      Power Inductors 2 (cont.)

      Power inductors

      Current compensated chokes

      Coil with ferrite

      Trending Tags

        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About
      No Result
      View All Result
      European Passive Components Institute
      No Result
      View All Result
      Home e-Symposium

      KEMET Miniaturized EMI-Suppression and DC-Link Power Box Unique Designs for Harsh Environment in Energy, Industrial and Automotive Application

      August 26, 2022
      Reading Time: 25 mins read
      8 0
      A A

      Electronic component miniaturization and operation in harsh environmental conditions are growing trends in applications, such as on-board chargers, energy meters, capacitive power supplies, including connection in series with the mains, motor drives, wind and solar inverters. Current EMI (Electromagnetic Interference) X2 class suppression and DC-link power box film capacitors need capability improvement to meet these requirements.

      Full paper pdf download

      Very high capacitance and dissipation factor stability are required during operational life in severe ambient conditions such as high temperature and relative humidity, while still meeting European and other Electrical Norms (ENEC and CQC), the criteria in the standard for automotive application (AEC-Q200) and the international safety requirement (UL). The moisture absorbed into the capacitor leads to corrosion of the electrode and accelerated degradation of the capacitor by increasing of capacitance loss. Temperature-Humidity-Bias (THB) is a standard test for accelerated stress testing of corrosion and other moisture-driven mechanisms for degradation. In this paper, we have studied the characteristics and performance under high temperature and humidity conditions of new capacitor designs in a miniaturized version of first to the market metallized EMI X2 class suppression and DC-link power box film capacitors. Three advanced KEMET series of metallized film capacitors have been stressed under an applied rated AC or DC voltage at 85°C and 85 %R.H. and the drop of capacitance and change of the dissipation factor have been monitored with the time for 500 and 1000 hours, respectively.

      The paper was presented by Hristina Kostadinova Boshkova, KEMET Electronics Macedonia, North Macedonia at the 3rd PCNS 7-10th September 2021, Milano, Italy as paper No.5.1.

      Jump to section

      1. EMI SUPPRESSION AND DC-LINK METALLIZED FILM CAPACITORS

      • 1. EMI SUPPRESSION AND DC-LINK METALLIZED FILM CAPACITORS
      • 2. MINIATURIZATION CHALLENGES
      • 3. STRESS TESTING & RELIABILITY
      • 4. EXPERIMENTATION, TEST RESULTS & CONCLUSION

      INTRODUCTION

      Progress in semiconductor technologies, such as the implementation of MOSFET Wide Band Gap (WBG) devices and the implementation of diode devices, emphasizes the size miniaturization and increased performance of electronic components. However, reliability remains a concern when components and devices downsize and become more compact. The utilization of WBG semiconductor components in power conversion systems allows for smaller footprints and greater efficiency with lower energy losses during the energy conversion. Other key advantages include reducing audible noise and the miniaturization of passive components, all with the benefit of printed circuit board (PCB) real estate reduction. However, due to the ever-increasing number of electronic components integrated into smaller geometries, miniaturized devices have become increasingly susceptible to electrical noise or interference. While the use of higher frequencies in WBG devices helps to minimize audible noise, it produces more high-frequency emissions and requires more complex designs to meet emission requirements by regulatory agencies. For these reasons, EMI suppression capacitors play a crucial role in the electronics industry, with the need for more miniaturized solutions under critical electrical and environmental applications.

      Metallized film capacitors in EMI suppression

      The safety EMI suppression capacitors, Class X and Class Y, are designed for AC line filtering, minimizing the generation of Electromagnetic Interference in the radio-frequency range and negative effects associated with received EMI/RFI in many electronic device applications. Class X and Y capacitors are directly connected to the AC power input in order to filter the noise emitted by the device to the electrical grid or to the power line. Because of the direct connection to the AC voltage, the capacitors may be subjected to overvoltage or voltage transients like lightning strikes and power surges. Class X capacitors are connected between line to line or line to neutral and Y capacitors are connected between line to ground. If a class X capacitor fails because of an overvoltage event, it is likely to fail short and this failure, in turn, would cause an overcurrent protective device, like a fuse or circuit breaker, to open. Therefore, a capacitor failing in this fashion would not cause any electrical shock hazards. If a Class Y “line to ground capacitor” fails short and this could lead to a fatal electric shock due to loss of the ground connection. For that reason, the class Y is designed to fail open in order to avoid a fatal electric shock hazard.

      Fig.1. Safety capacitors classifications: a) Voltage signal without CX & CY filtering; b) Voltage signal with CX & CY filtering

      Class X capacitors can be further divided in two subclasses X1 and X2 according to the peak voltage of the impulse to which they may be subjected and which they can safely withstand. The X2 class capacitors can withstand peak impulse voltages up to 2.5 kV and X1 can withstand up to 4 kV. Similarly, class Y capacitors are divided into two subclasses Y1 and Y2, where Y2 capacitor can withstand max peak impulse voltages up to 5 kV and Y1 can withstand up to 8 kV. Also, X1 capacitors going to their higher peak impulse voltage capability can be substituted by Y2 or Y1 capacitors of the same or higher rated voltage whereas X2 capacitors can be substituted with X1, Y2 or Y1 capacitors of the same or higher rated voltage.

      Table 1. Class X and Y subclass ratings

      Metallized film capacitors in DC-Link applications
      On the other hand, DC-Link capacitors form an essential stage in power conversion for many applications, including three-phase Pulse Width Modulation (PWM) inverters, photovoltaic and wind power inverters, industrial motor drives, automotive onboard chargers and inverters, medical equipment power supplies, etc. Demanding applications possess cost, harsh environmental, and stringent reliability constraints. Although circuit designs can use different approaches, the long-standing core of power conversion designs includes DC-Link capacitors. DC-Link capacitors can improve system energy density and resolve the challenge of ripple current introduced by rapid switching that is inherent to switching power conversions.

      The automotive industry includes prime examples of power conversion in the hybrid and electric powertrains. Battery electric vehicles include a rechargeable bank of batteries to store energy for the drive system, an electric drive motor, and a power controller that includes an inverter. These all operate at high voltages extending from 48 VDC to as high as 800 VDC. Due to the physical limitations that limit current, high voltage correlates to high performance. The higher the operating DC voltage, the lower the required current flow for the same power output (P=VI). The automotive industry is well-known for requiring components that can operate with high reliability at extremely high temperatures, under continuous vibration, and where components are subject to harsh environmental conditions. The three-stage traction inverter converts battery power to drive the motor, and the DC-Link capacitor is key to this design.

      Jump to section

      1. EMI SUPPRESSION AND DC-LINK METALLIZED FILM CAPACITORS

      • 1. EMI SUPPRESSION AND DC-LINK METALLIZED FILM CAPACITORS
      • 2. MINIATURIZATION CHALLENGES
      • 3. STRESS TESTING & RELIABILITY
      • 4. EXPERIMENTATION, TEST RESULTS & CONCLUSION
      Page 1 of 4
      Previous 1234 Next
      Source: PCNS, EPCI original article
      Previous Post

      Energy Storage Capacitor Technology Comparison and Selection

      Next Post

      Development of 3D On-Chip Capacitor Based on High-κ Dielectric

      Related Posts

      ESA SPCD

      New Generation of Wafer-Scale, Hermetically Sealed Chip Fuse for Space Applications

      14
      ESA SPCD

      Miniature RF Switch MEMR for Compact Redundancy Ring

      11
      ESA SPCD

      Low Profile Solderless Flat Interconnect for Space Applications

      38

      Categories

      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
        • ESA SPCD
        • PCNS
      • EPCI news
      • news collection

      Popular Posts

      • Transformer: Parasitic parameters and equivalent circuit

        1212 shares
        Share 485 Tweet 303
      • Transformer Calculation and Applications

        662 shares
        Share 265 Tweet 166
      • Simulation with LTspice

        446 shares
        Share 178 Tweet 112
      • Introduction to Ceramic Capacitors

        443 shares
        Share 177 Tweet 111
      • Insulation Resistance, DCL Leakage Current and Voltage Breakdown

        412 shares
        Share 165 Tweet 103

      EPCI Membership

      join passive components community

      © 2023 European Passive Components Institute

      No Result
      View All Result
      • Home
      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About

      Welcome Back!

      Login to your account below

      Forgotten Password?

      Retrieve your password

      Please enter your username or email address to reset your password.

      Log In
      This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.