• Latest
  • Trending
Supercapacitors and modules; credit: Maxwell

Supercapacitors – Construction & Basic Function

Würth Elektronik Launches New Line of Toggle Switches

Würth Elektronik Launches New Line of Toggle Switches

Microwave Multi Line Connectors Mounting and Handling Precautions

Microwave Multi Line Connectors Mounting and Handling Precautions

PCNS Passive Components Symposium 11-14th September 2023
Flex Suppressor Explained and its Applications

Flex Suppressor Explained and its Applications

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Murata Establishes Joint Venture Company to Produce MLCC Raw Materials

Samtec New Interconnects Enhances Power and Signal Integrity

Samtec New Interconnects Enhances Power and Signal Integrity

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

Examining the Influence of ESR and Ripple Current on Selecting the Suitable Capacitor

PCB Via Design Selection; Plugging-Filling-Tenting

PCB Via Design Selection; Plugging-Filling-Tenting

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

SABIC Validates its 150°C Film Foil to Enable Adoption of Film Capacitors in SIC Power Modules

Outlook of Passive Electronic Components Market for Oil & Gas Electronics in 2023

Outlook of Passive Electronic Components Market for Oil and Gas Electronics in 2023

  • Home
  • ABC of CLR
    • All
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines

    RF Inductors and Filters

    Power transformers

    Telecom transformers

    LAN transformers

    Transformer Calculation and Applications

    Power Inductors 2 (cont.)

    Power inductors

    Current compensated chokes

    Coil with ferrite

    Trending Tags

      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines
    • e-Symposium
    • EPCI Membership
    • About
    No Result
    View All Result
    European Passive Components Institute
    • Home
    • ABC of CLR
      • All
      • ABC of Capacitors
      • ABC of Inductors
      • ABC of Resistors
      • Mounting Guidelines

      RF Inductors and Filters

      Power transformers

      Telecom transformers

      LAN transformers

      Transformer Calculation and Applications

      Power Inductors 2 (cont.)

      Power inductors

      Current compensated chokes

      Coil with ferrite

      Trending Tags

        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About
      No Result
      View All Result
      European Passive Components Institute
      No Result
      View All Result
      Home ABC of CLR ABC of Capacitors

      Supercapacitors – Construction & Basic Function

      January 21, 2022
      Reading Time: 11 mins read
      166 7
      A A
      Supercapacitors and modules; credit: Maxwell

      Supercapacitors and modules; credit: Maxwell

      C 4.0 SUPERCAPACITORS

      C 4.1. Introduction and Basic Function

      Supercapacitors (or ultracapacitors) are the fastest growing capacitor technology on the market offering very high DC capacitance and high energy densities. Sometimes all supercapacitors are mis-called as EDLC (Electric Double Layer Capacitors), but as we will explain shortly, EDLC is large, but only one part of supercapacitor family. Supercapacitors features sit between capacitors and batteries, with a firm cell rated voltage between 1 and 3.8V. Since its introduction, supercapacitors has proved to be very reliable; with continuous long life operation and practically no charge/discharge cycle wear out.

      Supercapacitors are used as DC energy storage media, short high power charge storage (automotive start-stop systems), back-up for semiconductor memories and microprocessors etc. New designs in larger modules have opened up space for a number of power applications that concur rechargeable batteries.

      There is no fixed dielectric material and charge is accumulated in interface between active electrodes and the electrolyte. There are two basic mechanisms of charge storage:

      • Electrostatic Charge Storage
      • Pseudocapacitance Electrochemical Charge Storage

      Electrostatic storage is based on accumulation of charge in charge traps within so called Helmholtz layers (inner and outer) – see Figure C4-1a. Pseudocapacitance storage is electrochemical process, where charge is accumulated by adsorbed ions. – see Figure C4-1b.

      Fig. C4-1a Electrostatic storage charge mechanism
      Fig. C4-1b Electrochemical storage (Pseudocapacitance) charge mechanism

       Mix of both charge storage mechanisms present in real supercapacitors. Per dominant charge mechanism supercapacitor types split in three categories as shown in Fig. C4-2:

      Fig. C4-2 Supercapacitor types
      • EDLC Electric Double Layer Capacitors with electrostatic charge mechanism dominance
      • Pseudocapacitors – electrochemical charge dominance
      • Hybrid – one electrode with electrostatic and second with pseudocapacitance mechanisms dominance

      EDLC capacitors are using high surface synthesized electrodes based on activated carbon, carbon nano-tubes or graphene. Alternatively, the electrodes can be made from cheap “bio-waste” monolithic material with a natural hierarchy of pore sizes such as coconuts, melon rinds, wood, fish scales etc.

      EDLC capacitors with symetrical electrodes are non-polarized but are in practice supplied with a polarity marking that should be followed. One reason is that the positive electrode (+) may be processed differently from the negative one (-).

      The electrochemical storage – pseudocapacitance – is not related to any electrochemical reaction – in difference to batteries. The charge can be stored by mechanisms such as redox-pseudocapacitance or redox-intercalation – see figure C4-3b and C4-3c below.

      Fig. C4-3 Supercapacitor storage mechanisms

      It is also possible to combine hybrid designs with other electrode technology such as

      • capacitor hybrid: wet tantalum hybrid capacitor – one electrode tantalum anode and second electrode supercapacitors
      • battery hybrid: supercapacitor one electrode and second battery electrode

      C 4.2. Construction

      C 4.2.1. Electrodes

      Superacapacitor construction is explained on EDLC symetrical structure, nevertheless the basic design concept is also valid for pseudocapacitors that target boosting electrochemical storage using different materials, processes and electrolytes.

      When we apply a voltage over the capacitor, existing ions in the electrolyte go through the membrane to their respective electrode, i.e., to the surface of the activated carbon that via the electrolyte is connected to the current supply electrodes. The ions are captured of the activated carbon surface where they attract reverse charges inside the carbon (Figure C4-4 and C4–5). We thus have a double layer of charges. Hence the name double layer capacitor. A schematic taken from a modern construction is shown in Figure C4-5. The original designs from 1970s used a membrane and conductive rubber as a current collector as shown in C4-4. In modern constructions membrane is replaced with a separating porous foil and the conductive rubber with a current collector, usually an aluminum foil – see Fig C4-5. Structure of wound – stacked type using aluminum foil as current collector is shown in figure C4-6.

      Figure C4-4 illustrates how the activated carbon and the ions in the electrolyte work together.

      This image has an empty alt attribute; its file name is C2-74_Function-of-the-double-layer-capacitor.jpg
      Figure C4-4. Function of EDLC (older construction)

      This image has an empty alt attribute; its file name is C2-75_Schematic-of-the-double-layers-of-electric-charg-es-in-an-electrochemical-capacitor.jpg
      Figure C4-5. Schematic of EDLC capacitor
      This image has an empty alt attribute; its file name is C2-77_Schematic-of-a-modern-EDLC-construction..jpg
      Figure C4-6 Wound EDLC capacitor structure with aluminum foil current collector

      Because the distance between the charges is small – ion diameters – , and furthermore, because the total carbon surface is enormous the charge quantity will be extremely large. The capacitance range amounts to the magnitude of several thousand farads.

      The continuous development to enlarge surface area has resulted in sophisticated active electrode system based on carbon active layer (carbon fibers), carbon nano-tubes (CNT) or the latest design with graphene.

      C 4.2.2. Electrolyte

      Applied voltage, efficiency and power handling also depends to selection of electrolyte. Electrolyte provide a media that supports creation of charge on interface with electrodes, enable its mobility or provide adsorbed ions as charge carriers (pseudocapacitance). Electrolyte matching with electrode system is thus essential to achieve both maximum energy and power density and also define its cell voltage.

      There are currently three types of electrolytes:

      • aqueous based
      • organic based (liquid or solid/gel)
      • ionic liquids

      Aqueous electrolytes provide good conductivity at no toxity, however, maximum voltage reach 1.2 V.

      Organic electrolytes are capable of maximum ~3 V and providing better temperature range, nevertheless they can be limited by flammability or toxicity. Solid organic electrolytes usually consist of conductive polymers characterized by low ESR values and corresponding power pulse capabilities.

      Ionic liquids, the latest electrolyte development steps, are salts in liquid form rich on ions and short-lived ion pairs. This electrolyte enabled further increase of maximum voltage to ~3.7 V at no issue with flammability or toxicity – see spider chart benchmarking electrolyte types in Fig. C4-7.

      Figure C4-7. Supercapacitor electrolyte types comparison; source: IDTechEx, used with permission

      If voltage is higher than the maximum cell voltage the electrolyte starts decomposing to form H2 and O2. Just below that voltage the surge voltage is specified and with some margins to the surge voltage we find the rated cell voltage.

      C 4.2.3. ESR Resistance

      Figure C4-8. Electrolyte and contact resistances in the double layer capacitor.

      The active electrode (carbon) particles in the dispersion variant have via the electrolyte and via adjacent particles connection with the current supply electrodes. Some particles are situated close to its electrode and have a comparatively small contact resistance, others have long contact chains and manifold larger connection resistances. In Figure C4-8 three particles are shown with the series resistances R1, R2 and Rx, where R1 < R2 << Rx. The figure also shows the membrane resistance Rm in the electrolyte. The carbon particles are not spheres but have a surface with hollows and channels, just as the etched surface of an aluminum foil, but even more enlarged. See the schematic enlargement in the figure.

      The electrolyte resistance from the inlet to the bottom of a channel will be considerable. The charges in the channel get a varying contribution of series resistances, depending on location in the channel, a contribution that shall be added to those resistances R1, R2…. , intimated in the entire view. This results in a multitude of elementary capacitances mutually connected in parallel in a complicated resistor network whose part resistances differ between themselves with a number of powers of ten. The time constants of the respective elementary capacitances varies from fractions of a second to hundreds of hours. The resistance network can be summarized to an ESR that varies with capacitance, type and manufacture from milliohms to several hundred ohms at RT. What contributes to the lower ESR values of modern ultracapacitors is the more conductive organic electrolytes or ioniq liquids as well as improvements in the contact medium between the active electrode particles and current collectors.

      Because the ESR present in many backup capacitors is large compared to aluminum electrolytics it limits the ripple current use. A usual limit for the heat release is set to +2 °C.

      Note that we don’t have any real dielectric, only a face boundary between electrode and electrolyte of 2 to 5 nm, that prevents respective charges from passing.

      C 4.3. Series connection

      Energy increase with voltage squared, thus modern high power electronics require work in 16, 25, 35, 50, 110 volt ranges, which requires multiple cell linking (2 to 4 V). The automotive market push towards 48 volt subsystems.

      That raises concern about reliability of units containing multiple cells linked together. If we in electronic designs want to connect discrete capacitors in series to meet higher working voltages we should use the same type of elements.

      As an example: Series connection of 2pcs 400F 2.5V cells with +10/-5% cap tolerance in worst case scenario will end up with 380F and 440F caps on the board. The voltage of the individual cells will split accordingly to: 2.68 V: 2.32V that exceeds rated voltage of the first capacitor.

      As noted from electrolyte decomposition, the rated cell voltage of supercapacitors (or surge voltage, if specified) must not be exceeded. Exceeding the maximum cell voltage considerably lower life time of supercapacitors, thus use of balancing circuits are strongly recommended when connecting unit cells in series to attain higher rated voltages.

      Picked from a manufacturer datasheet: Rule of thumb by EDLC supercapacitor lifetime prediction is:

      • With every 0.2 voltage decrease the cell lifetime increases about 2x in the specified voltage range
      • With every 0.1 voltage increase over the spec V the cell lifetime gets half

      see figure C4-9. comparison of balancing methods and its impact to lifetime and efficiency.

      Figure C4-9 balancing method impact to lifetime and efficiency of EDLC supercapacitors; source: Eaton

      If we don’t use external voltage dividers it is recommended as a precaution that the applied total voltage divided by the number of linked cells does not exceed 85% of the rated cell voltage.

      Note: Low voltage (~1.8V) aqueous electrolyte type may not require balancing on higher voltage modules as the variability of applied voltage on high number of cells/layer may not be critical.


      ABC of CLR: Chapter C Capacitors

      Supercapacitors – Construction & Basic Function

      EPCI licenced content by:
      [1] EPCI European Passive Components Institute experts original articles
      [2] CLR Passive Components Handbook by P-O.Fagerholt*
      *used under EPCI copyright from CTI Corporation, USA

      Creative Commons License

      This page content is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

      see the previous page:

      Wet Tantalum Capacitors

      < Page 24 >

      see the next page:

      Supercapacitors – Features and Measurement

      Previous Post

      Wet Tantalum Capacitors

      Next Post

      Supercapacitors – Features and Measurement

      Related Posts

      ABC of CLR

      RF Inductors and Filters

      850
      ABC of CLR

      Power transformers

      695
      ABC of CLR

      Telecom transformers

      541

      Categories

      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
        • ESA SPCD
        • PCNS
      • EPCI news
      • news collection

      Popular Posts

      • Transformer: Parasitic parameters and equivalent circuit

        1212 shares
        Share 485 Tweet 303
      • Transformer Calculation and Applications

        662 shares
        Share 265 Tweet 166
      • Simulation with LTspice

        446 shares
        Share 178 Tweet 112
      • Introduction to Ceramic Capacitors

        443 shares
        Share 177 Tweet 111
      • Insulation Resistance, DCL Leakage Current and Voltage Breakdown

        412 shares
        Share 165 Tweet 103

      EPCI Membership

      join passive components community

      © 2023 European Passive Components Institute

      No Result
      View All Result
      • Home
      • ABC of CLR
        • ABC of Capacitors
        • ABC of Inductors
        • ABC of Resistors
        • Mounting Guidelines
      • e-Symposium
      • EPCI Membership
      • About

      Welcome Back!

      Login to your account below

      Forgotten Password?

      Retrieve your password

      Please enter your username or email address to reset your password.

      Log In
      This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.