• Latest
  • Trending
Resistivity, Thermal Resistance and Temperature Coefficient

Resistivity, Thermal Resistance and Temperature Coefficient

Modelithics Releases Components Library v25.0 for Keysight 

Modelithics Releases Components Library v25.0 for Keysight 

How to design a 60W Flyback Transformer

How to design a 60W Flyback Transformer

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

Murata Releases 008004 High-Frequency SMD Chip Inductor

Murata Releases 008004 High-Frequency SMD Chip Inductor

Wk 19 Electronics Supply Chain Digest

Wk 19 Electronics Supply Chain Digest

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Bourns Extends Rotational Life Option for its Guitar Potentiometer

Modeling and Simulation of Leakage Inductance

Modeling and Simulation of Leakage Inductance

Power Inductor Considerations for AI High Power Computing – Vishay Video

Power Inductor Considerations for AI High Power Computing – Vishay Video

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

TAIYO YUDEN Releases Compact SMD Power Inductors for Automotive Application

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

  • Home
  • ABC of CLR
    • All
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines
    RF Inductors and Filters

    RF Inductors and Filters

    Power transformers

    Power transformers

    Telecom transformers

    Telecom transformers

    LAN transformers

    LAN transformers

    Transformer Calculation and Applications

    Transformer Calculation and Applications

    Power Inductors 2 (cont.)

    Power Inductors 2 (cont.)

    Power inductors

    Power inductors

    Current compensated chokes

    Current compensated chokes

    Coil with ferrite

    Coil with ferrite

    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines
  • e-Symposium
  • EPCI Membership
  • About
No Result
View All Result
European Passive Components Institute
  • Home
  • ABC of CLR
    • All
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines
    RF Inductors and Filters

    RF Inductors and Filters

    Power transformers

    Power transformers

    Telecom transformers

    Telecom transformers

    LAN transformers

    LAN transformers

    Transformer Calculation and Applications

    Transformer Calculation and Applications

    Power Inductors 2 (cont.)

    Power Inductors 2 (cont.)

    Power inductors

    Power inductors

    Current compensated chokes

    Current compensated chokes

    Coil with ferrite

    Coil with ferrite

    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines
  • e-Symposium
  • EPCI Membership
  • About
No Result
View All Result
EPCI
No Result
View All Result
Home ABC of CLR

Resistivity, Thermal Resistance and Temperature Coefficient

October 2, 2023
Reading Time: 5 mins read
A A
Resistivity, Thermal Resistance and Temperature Coefficient

R1.1 RESISTIVITY (ρ)

The resistivity, ρ, is a material constant. The higher the resistivity in the resistor material, the higher its resistance. The connection can be described as

………………………… [R1-1]

Here
R = resistance
l = conductor length
A = conductor area.

Depending on what units we express l and A in we get different units of ρ. A common way is by expressing l in m(eter) and A in mm2 ρ then gets the unit Ωmm2/m. If we instead choose l in m and A in m2, the unit for ρ will be Ω x mm2/m, which usually is transformed to Ωm. That unit often is used for non-metallic materials. If we know the value of ρ expressed in Ωmm2/m, that value has to be multiplied by the factor 10-6 to give the value in Ωm. Thus, 10-6 x Ω×mm2/m = 1 Ωm.

R1.2 SHEET RESISTIVITY (Ω/square)

Figure R1-1. Surface resistivity r(sq) [Ω/square].

The sheet resistivity is a measure of the resistance per surface unit of resistive films. A square surface element as shown in Figure R1-1 gets according to the formula [R1-1] the resistance:

…………………[R1-2]

Thus, the resistance per square unit, r(sq), is independent of the surface size. It is the film thickness and its intrinsic resistivity that determine r(sq) (expressed in Ω/square).

R1.3 SURFACE TEMPERATURE and HOT SPOT

Figure R1-2. Temperature rise versus Load. Ta = ambient temperature.

The surface temperature rise of the resistor body depends on the load as shown in principle in Figure R1-2. As temperature rises, conduction, radiation and convection (air-cooling) from the resistor body increases which causes the temperature curve to level off.

Figure R1-3 shows the temperature distribution along a resistor body. Thermal dissipation to the leads or SMD terminals decreases the temperature at the ends. In the middle of the body we register a temperature maximum, the so called Hot Spot temperature. This temperature determines both the resistor stability and life.

It is important that spiraling or wire winding be spread uniformly over the whole free resistor length. Otherwise we get an intensified Hot Spot effect that endangers life and stability.

It is not only for the resistor itself the Hot Spot is of vital importance. Heat radiation may have an effect on adjacent components and circuit boards. Thus, see that there is a satisfactory distance to the resistor body from heat-sensitive adjacent components.

Figure R1-3. Temperatures:
Thsp = Hot Spot temperature.
Ta = ambient temperature.

R1.4 THERMAL TIME CONSTANT, τw

Figure R1-4. Thermal time constant,τw.

The thermal time constant, τw, is defined as the warm-up time for the resistor surface to attain 63% or theoretically (1-1/e) of the final temperature after applied load is increased in steps, usually PR (Figure R1-4). Of course, the time constant is strongly dependent on the resistor body size. It will be quicker to heat up a small body than a big one. Table R1-1 states standard values for some DIN classified sizes.

Table R1-1. Examples of thermal time constants and thermal resistances.

DIN size[1] 0204 0207 0414
Thermal time constant, τw (s) 2 5 20
Thermal resistance, Rth (K/W) 400 250 170

[1] Leaded cylindrical components.

R1.5 THERMAL RESISTANCE, Rth

The thermal resistance, Rth, is expressed in K/W. It describes the temperature increase of a resistor body under applied load. Since radiation causes the temperature curve to turn downwards at increasing load data about Rth concerns normalized mounting and a load of PR. (See DIN 44 050). As shown in Figure R3-5 an power overload reduces the Rth.

Figure R1-5. Thermal resistance at overload Ps and at rated power PR.

In Equation R1-3 the connection between Rth and current temperatures is described. Rth is expressed in K/W but due to the fact that the equation deals with the difference between two temperatures it doesn’t matter if we use °C or K for both values. The differences will be equally large. K2-K1 = [(°C2+273) – (°C1+273)] = °C2-°C1.

…………[R1-3]

Thsp = Hot Spot temp. in K or °C
Ta = ambient temp. in K or °C.
P = applied load, W.

In Table R1-1 there are some examples of the thermal resistance for standard DIN sizes.

R1.6 TEMPERATURE COEFFICIENT of RESISTANCE, TCR

The temperature coefficient of resistance, TCR, is expressed in ppm/°C.

……….[R1-4]

For clarification reasons TC is often written TCR, i.e., Temperature Coefficient of Resistance.

Specification limits and actual changes may look like the ones in following figure where a family of components are shown.

Figure R1-6. Example of specified TC limits and actual records.


ABC of CLR: Chapter R Resistors

Resistivity, Thermal Resistance and Temperature Coefficient

EPCI licenced content by:

[1] EPCI European Passive Components Institute experts original articles
[2] CLR Passive Components Handbook by P-O.Fagerholt*

*used under EPCI copyright from CTI Corporation, USA

Creative Commons License
This page content is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

< Page 1 >

see the next page:

Pulse Load, Power and Voltage Derating

Previous Post

Derating and Category Concepts

Next Post

Pulse Load, Power and Voltage Derating

Related Posts

RF Inductors and Filters
ABC of CLR

RF Inductors and Filters

Power transformers
ABC of CLR

Power transformers

Telecom transformers
ABC of CLR

Telecom transformers

Discussion about this post

Categories

  • ABC of CLR
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines
  • e-Symposium
    • ESA SPCD
    • PCNS
  • EPCI news
  • Market Insights
  • news collection
  • Transformer: Parasitic parameters and equivalent circuit

    Transformer: Parasitic parameters and equivalent circuit

    0 shares
    Share 0 Tweet 0
  • Transformer Calculation and Applications

    0 shares
    Share 0 Tweet 0
  • Introduction to Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Simulation with LTspice

    0 shares
    Share 0 Tweet 0
  • Dielectric Insulation Resistance, Capacitor DCL Leakage Current and Voltage Breakdown

    0 shares
    Share 0 Tweet 0

© 2024 European Passive Components Institute

No Result
View All Result
  • Home
  • ABC of CLR
    • ABC of Capacitors
    • ABC of Inductors
    • ABC of Resistors
    • Mounting Guidelines
  • e-Symposium
  • EPCI Membership
  • About
This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version